The accurate reconstruction of time-averaged and unsteady data in wind-tunnels from few measurements has become an important topic in the aerospace industry. We will show here how the use of time-averaged (Reynolds-Averaged Navier-Stokes) and fully unsteady (Navier-Stokes) models may help reconstruct a whole flow field from scarce measurements using non-linear optimization techniques. This will be illustrated on experimental and numerical configurations exhibiting separation, such as bluff-bodies, backward facing step flows or jet flows. Finally, we will show how the knowledge of the time-averaged flow and its hydrodynamic stability properties may provide an alternative efficient way of reconstructing large-scale and low-frequency unsteady features in turbulent flows.

Transitional axisymmetric jet flow (Re=3300).
(a) Reconstructed streamwise velocity perturbation (from stability)
(b) TR-PIV snapshot to be reconstructed.

contact:
sig_communication@imft.fr
Institut de Mécanique des Fluides
2, Allée du Pr Camille Soula,
31400 Toulouse.